САМОЛЕТЫ НА ВОДОРОСЛЯХ И ПАКЕТЫ ИЗ СВЕКЛЫ

Возобновляемое сырье, о котором так много говорят в связи с истощением природных ресурсов, — это органические отходы промышленности, сельского и лесного хозяйства. Такая растительная биомасса дешевле газа, угля и нефти, из нее можно получать новые продукты, одновременно решая проблему утилизации отходов. T&P опубликовали статью из сборника «Атлас технологий будущего» о том, как получить дизельное топливо из водорослей, электричество — из органических отходов, а биоразлагаемую упаковку — из свеклы.

Особенно перспективными являются технологии переработки возобновляемого сырья в биотопливо и электроэнергию, а также решения для производства биополимерной упаковки. Применение этих технологий позволяет осуществлять их рециклизацию, т. е. вторичную переработку в новом цикле создания продукции (в частности, субстратов в топливных элементах и биопластиков).

Потенциал использования названных технологий в России очень высок. Их разработка и внедрение приведут в среднесрочной перспективе к снижению зависимости экономики страны от энергоресурсов, зарубежных продуктов и технологий, созданию новых рынков.

Биодизель из микроводорослей

По мере роста численности населения и повышения мобильности людей увеличивается ежегодная потребность в авиационных и автомобильных перевозках. Удовлетворять усиливающийся спрос на моторные топлива возможно путем производства биодизеля нового поколения из зеленых микроводорослей — альтернативы биодизелям, получаемым на основе сельскохозяйственных культур.

Зеленые микроводоросли способны преобразовывать углекислый газ в органические соединения, оказывая при этом очищающий эффект на атмосферу и гидросферу. Такое биотопливо можно использовать в двигателях дизельного типа: оно очень близко по составу к традиционным моторным топливам — продуктам нефтепереработки. Очевидные преимущества микроводорослей — высокие скорость роста биомассы и содержание масел, удобство сбора и возможность выращивания непосредственно на предприятиях и вблизи электростанций — усиливают интерес ученых и многих крупных корпораций к их исследованию и промышленному использованию. В ряде стран начато серийное производство специальных биореакторов по выращиванию микроводорослей. Япония и США уже осуществили успешные испытания авиационного и автотранспорта, работающего исключительно на биодизеле из водорослей.

 

Эффекты

Стимулирование развития транспортного сектора, повышение его экологичности и удовлетворение растущих потребностей в топливе.

Снижение остроты конкуренции между техническими и продуктовыми посевными площадями (благодаря культивированию микроводорослей в фитореакторах, вихревых плавающих аквареакторах, открытых водоемах).

Развитие регионов с неблагоприятными социально-экономическими условиями и снижение их зависимости от импортируемых топлив.

Получение белков, антиоксидантов, пищевых красителей и других полезных продуктов из микроводорослей.

Оценки рынка

К 2030 г. мировое производство биотоплива увеличится до 150 млн тонн в нефтяном эквиваленте при ежегодных темпах роста на уровне 7–9%. Его доля достигнет 4–6% общего объема топлива, потребляемого транспортным сектором. Биотопливо из водорослей может заменить более 70 млрд литров ископаемого топлива ежегодно. Рынок биотоплива в России к 2020 г. может вырасти более чем в 1,5 раза — до отметки в 5 млн тонн в год. Вероятный срок максимального проявления тренда: 2025–2035 гг.

Драйверы и барьеры

Экологическая политика развитых стран по минимизации масштабов загрязнения окружающей среды.

Необходимость масштабных инвестиций для строительства заводов по производству биодизеля, настройки технологических процессов.

Зависимость эффективности роста микроводорослей от интенсивности солнечного света (при выращивании в открытых водоемах).

Структурный анализ

Прогноз структуры мирового рынка биотоплива: 2022 (%)

 

Электроэнергия из органических отходов

 

Процессы утилизации и переработки отходов могут быть совмещены с производством практически значимых продуктов и даже электроэнергии. При помощи специальных устройств — микробных топливных элементов (МТЭ) — стало возможным производить электроэнергию из отходов напрямую, минуя стадии получения биогаза и его последующей переработки в электричество.

МТЭ представляют собой биоэлектрическую систему. Эффективность ее функционирования зависит от метаболической активности бактерий, которые расщепляют органические соединения (отходы) и передают электроны на электрическую цепь, встроенную в эту же систему. Наибольшей эффективности таких бактерий можно добиться, встраивая их в технологическую схему предприятий по очистке сточных вод, содержащих органические вещества, при расщеплении которых выделяется энергия.

Уже существуют лабораторные разработки, позволяющие использовать МТЭ для подзарядки аккумуляторов. По мере масштабирования и оптимизации технологических решений станет возможным обеспечивать электричеством и небольшие предприятия. Например, высокопроизводительные МТЭ, работающие на объемах от десятков до тысяч литров, обеспечат автономное питание очистных сооружений.

 

Эффекты

 

Повышение экологичности производственных процессов и эффективности работы предприятий, снижение их зависимости от внешних источников электроэнергии, уменьшение себестоимости продукции и расходов на приобретение очистных технологий.

Улучшение ситуации в энергодефицитных регионах, повышение их конкурентоспособности благодаря использованию МТЭ.

Возможность автономного получения электроэнергии для неэнергоемких целей (например, в небольших фермерских хозяйствах).

Оценки рынка

70% — настолько вырастет к 2020 г. в России доля отходов, которые будут перерабатываться методами биотехнологий, по сравнению с 2012 г. В странах Европейского союза доля электроэнергии из биогаза составит около 8%. Вероятный срок максимального проявления тренда: 2020–2030 гг.

Драйверы и барьеры

Увеличение объемов органических отходов и рост потребности в электроэнергии.

Возможность работы биореакторов типа МТЭ на различных источниках энергии, включая сточные воды.

Недостаточный уровень инвестиций, необходимых для встраивания МТЭ в технологические процессы, длительный период их окупаемости.

Необходимость привязки биореакторов к местам образования отходов.

Относительно низкая эффективность ныне функционирующих опытно-промышленных конструкций биореакторов типа МТЭ.

Структурный анализ

Исследования микробных электрохимических систем по типам: 2012 (%)

 

Биоразлагаемая полимерная упаковка

 

Повсеместное распространение упаковки из синтетических полимеров (пакетов, пленок, контейнеров) приводит к обострению проблемы загрязнения окружающей среды. Решить ее может переход к упаковочным материалам из биоразлагаемых полимеров, быстро утилизируемых и удобных в использовании.

В большинстве развитых стран в производстве упаковки намечается тенденция вытеснения тяжело и долго (до нескольких сотен лет) разлагающихся синтетических полимеров биоразлагаемыми (с периодом утилизации 2–3 месяца). Ежегодный объем их потребления только в Западной Европе составляет около 19 тыс. тонн, в Северной Америке — 16 тыс. тонн. Вместе с тем по ряду показателей биополимерные упаковочные материалы пока отстают от традиционных синтетических.

Технологии производства биополимерных материалов на основе полимолочной кислоты из растительных сахаров зерновых культур и сахарной свеклы позволяют производить упаковку с высокими потребительскими характеристиками: эластичную и прочную, устойчивую к влаге и агрессивным соединениям, непроницаемую для запахов, с высокими барьерными свойствами и при этом эффективно и быстро разлагающуюся. Совершенствование технологий направлено на снижение их материало- и энергоемкости.

 

Эффекты

 

Формирование и развитие нишевых рынков — термоусадочных упаковок, влаго- и запахонепроницаемых пакетов, ударостойких контейнеров и др.

Сокращение зависимости экономики от нефтегазового сырья.

Снижение негативного воздействия на окружающую среду.

Повышение экологической культуры населения, стимулирование приверженности к здоровому образу жизни благодаря массовому использованию качественной и удобной биоразлагаемой упаковки.

Оценки рынка

Рынок биополимеров, изготовленных на основе возобновляемых ресурсов, будет ежегодно расти на 8–10%. Наиболее интенсивно будет развиваться сегмент упаковочных материалов. Уже сейчас объем этого сегмента составляет 90% текущего объема мирового потребления биополимеров (205 млн тонн). Емкость рынка биополимеров в 2020 г. достигнет 4 млрд долларов. Вероятный срок максимального проявления тренда: 2025–2030 гг.

Драйверы и барьеры

Ужесточение экологических требований к упаковочным материалам, повышение стоимости утилизации традиционной упаковки.

Сокращение использования неразлагаемой упаковки в связи с необходимостью экономить невозобновляемые ресурсы нефти и газа в развитых странах.

Недостаточно развитое экологическое воспитание у населения и бизнеса.

Более высокая стоимость биоразлагаемых полимеров по сравнению с синтетическими.

Структурный анализ

Биополимерные материалы на рынке производства биопластика: 2010–2011 (%).

 

 

 

 

Источник: theoryandpractice.ruhttp://www.chaskor.ru/